

| 1
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Welcome to DataFlex 20.0 for Web (Mobile/Touch)
DataFlex is a complete software platform for rapidly developing and deploying Windows, web, mobile and cloud

business applications - fast! It is one of many products Data Access Worldwide has delivered to the software

development community since 1976. DataFlex is for application development and is available as a Commercial

Edition, which is used by businesses, institutions and government agencies to build and deploy applications, and as a

Personal Edition, which is a free, fully functional edition that can be used for non-commercial, private use.

At this point, you should have installed the DataFlex Studio. If not, before you read through this introduction, make

sure to download a copy from www.dataaccess.com and install it.

During installation, use the DataFlex WebAppCheck tool to test whether your system is properly configured for

creating web applications.

Once you have DataFlex Studio installed, you will be ready to follow through this document to learn the steps

involved in building a basic database web application with DataFlex that includes data entry and reporting. This

document will focus on the new DrillDown - Mobile/Touch style web applications, but we offer a Quickstart guide

Desktop style applications.

Once you get the basics down, get further into the underlying programming language and framework to take

advantage of the whole range of features that DataFlex has to offer.

First, let us start by covering some concepts important to fully understand the DataFlex framework.

Object oriented

DataFlex is an object oriented programming (OOP) language. This means that all common components belong to a

pre-defined class. The classes hold the definition of how such components look, function, and what they exactly do.

Components are defined as objects of certain class in your application and that guarantees consistency and

reusability of code throughout your project.

A major advantage of using OOP is that a lot of technical details are defined in the classes and you can concentrate

on the real functionality of the application you want to develop customizing components as you need.

Workspace

Before you start a project, you need to create a new environment where all the elements of your project – such as

programs, objects, and rules – will be stored. That environment is called a workspace. A workspace is a set of folders

in which the database, source-code and all files necessary to your project are stored.

A workspace can hold one or more projects, which are the eventual programs or ‘executables’, but only one web

project – WebApp.src. In the Studio, Workspace Dashboard gives you an overview of the workspace and more details

are displayed in Workspace Explorer and Code Explorer. You can also see a workspace’s directory structure in the

Configure Workspace Properties dialog under the Tools menu in the Studio.

| 2
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

DrillDown - Mobile/Touch style

The DataFlex Web Application Framework relies on CSS (Cascading Style Sheet) for defining application layout. The

drilldown style applications are optimized for use on mobile and touch devices such as smartphones and tablets. A

dashboard with tiles,

bigger controls (like

buttons) and a

responsive design

characterizes this style.

In this introduction

guide, we will not go in

CSS itself, which is

more an expert level

feature.

Database

DataFlex can work with

any popular database

management system

(DBMS). DataFlex

comes with the

necessary database

Connectivity Kits that

allow you to utilize

those DBMS in your project, but for the purposes of this introduction we will limit ourselves to the embedded

DataFlex database, our native database.

Databases are maintained in the DataFlex Studio. The Studio allows for the creation of tables, the definition of

business rules and custom coding.

At a later time, you may easily convert native tables to any other supported database backend using the available

DataFlex conversion tools that will not only perform the conversion of table structures but also their existing data.

Data Dictionary

Data dictionaries are the business rules in your workspace that keep your data accurate and consistent. For example,

before saving records, the entered data needs to be validated – states should be uppercase and of a certain value,

and customers may not order more than the value specified in his credit limit.

Those validations are referred to as business rules and the files where they are stored are called data dictionaries. All

applications using data dictionaries will follow those same rules and if any rules change, only the data dictionaries

need to be adjusted and the new rules will be applied throughout all applications.

Having data dictionaries also means that if you were to migrate the application to another database platform, the

same business rules will automatically be applied no matter what database backend is used. Data dictionaries are

created and maintained via the Data Dictionary Modeler in the Studio.

Our Example Scenario: Media

We will build a small database application that we will call Media. We will create a table Media in which we store all

our CD's, DVD's, Books etc. Next, we will make a table named People to store the names of friends and relatives.

These two tables will be linked to each other in such a way that you can keep track of the location of each item in

your media library.

This example will take you through the following steps:

| 3
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

 Create a workspace

 Create a project named Media

All components in a workspace must be created while there is a project active

 Create a table named People

The table needs a unique key and columns to store address, phone-number, date of birth, etc. of a Person

 Create the Person Web Mobile Zoom View using a Wizard to enter data into the People table

A web view is a web page to enter data

 Create the Person Web Mobile Select View to create an overview list of all Person records

 Compile the program and test our first results

 Create a table named 'Media'

This will have a unique key and a few columns to store Author (/Artist/Writer), the media type and maybe the

price and purchase date. In the table we also store the PeopleID, to be able to relate to the Person table

 Manually, by using drag & drop, create a view to enter data into Media

 After that, we will build in some more advanced features:

o Make sure that the Media- and People ID's are automatically generated sequential numbers

o Ensure consistent format of the way the column Media.Type is entered

We will create a combo box for it and make sure the user always enters the types in a consistent manner

o Create a module to discover which person in People owns or borrowed what Media item

o Create a module to search with wild cards

o Create a DataFlex Reports report and integrate the report in the project

Getting Started!

Start the DataFlex Studio. We will start by creating a new workspace. From the File menu, choose New Workspace…

Give the workspace a name - in our example, we will name it MediaWebMobile. Since Windows has strict rules about

the location where web shares are accessible, create the

workspace in C:\Projects\DataFlex\MediaWebMobile.

After clicking the Next button, accept all defaults in the

Database Type wizard page as we use the embedded

database.

Prior to closing the wizard, you will see a summary of the

gathered

information and

what to do next.

The wizard

creates the

selected folders

for the Media

workspace and

returns to the

Studio so that

you may take the next steps.

Note: Workspace information can be altered later on via the DataFlex

Studio and – if folder renaming is desired – the Windows Explorer.

The Dashboard

After the workspace has been created, DataFlex Studio will open the Workspace Dashboard. The dashboard is a

feature that guides you through the application development. The dashboard gathers information from the

workspace and shows what you may want to pay attention. An orange button with an exclamation mark indicates a

| 4
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

required action; a number in a grey button

tells more about the status of the item. The

dashboard as shown here says that the next

step is a project creation and later the setup

of a database connection or creation of tables.

We will first create the project.

Tip: Keep the dashboard open and notice that

it will automatically update during the whole

process of application development.

Tip: At any time in the project development,

you can add TODO markers that are picked up

by the dashboard. This means you can use

the dashboard as a project management tool.

Create the Mobile Web

Project

The next step is to create a project. For almost everything we create

in the Studio we need an active project. There are several ways in

the Studio from which you can create a project. For now, click the

option in the dashboard. Alternatively, you can also create a new

project via the File pull-down menu, option New, and Project.

This will open a dialog in which we select "Mobile Web Project". This

choice displays a dialog where you then enter the name of the

application and virtual directory. The default names values are

identical to the workspace name. These names must be unique on

the same machine. The virtual directory name, used for the URL, is

an attribute from Microsoft IIS. Later you will see a URL

http://localhost/MediaWebMobile and IIS uses the MediaWebMobile

part of the name to find the web application.

It is not possible to change the directory name in this dialog. If you

would like a different folder name you should have indicated this in the new workspace wizard. The default will be

good enough to work.

A workspace can only have one web application and to make it easy the Studio uses the name WebApp.src. That

name cannot be changed.

Web applications can run under the default website or under a specific website. Applying running under a specific

website is too advanced for this introduction.

Click OK and a progress panel shows the files being copied. Finally, the Studio creates the WebApp.Src file on disk

and makes MediaWebMobile the current project. The project file

contains two main objects. One of them is a cWebApp that

contains a menu structure. At this point we can press the F5 key to

run the application.

First run

When run with F5 , the application starts with a login box in which

you can enter "guest" for the login name and the password. We

tell you more about the login soon.

http://localhost/MediaWeb

| 5
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

When we first run our Mobile Web project, we

are presented with a default dashboard page.

This page offers a nice base for navigation

through our web application. The tiles can be

used as buttons to quickly navigate to the most

used pages. For now, we will leave this page be,

and focus on the creation of a table in which we

will store our data.

Create the People Table

The next step in the process is to create one or

more tables. Use the Table Explorer to create

new tables. As usual, there are several ways to come to the point to start the table creation. Make sure you have the

Table Explorer window open. If Table Explorer is not opened – by default you will find

this window on the left hand side of the screen, grouped together with Code

Explorer – you can activate it via the View pull-down menu, Table Explorer

option or the button positioned in the views toolbar.

The Table Explorer panel consists of a tool-bar and a list (tree-view) which shows the

tables already present in your workspace. A file called filelist.cfg contains the names of

the tables. This file is automatically maintained for you.

Use the buttons above the list to create or edit a table for modification, view the

contents of a table, refresh table definition, sorting and/or filtering the list of tables

and as last one opening the SQL Connection Manager. A floating menu, open this

with a right mouse click in the Table

Explorer window, offers the same

functionality.

In the floating menu you will notice a couple of data dictionary options.

We will discuss the use of the data dictionaries later.

Click the "Create New Table" button (first button) or choose the "Create

New Table" option from the floating menu.

In the dialog you should enter the name of the table – People – in two of

the input fields (labeled Table Name and Root Name). The table number

value can be changed but the suggestion is good to go.

Press the OK button will instruct the DataFlex Studio to open a Table Editor for the new table we are creating.

The Table Editor panel contains areas with Columns, Indexes and Relationships information.

The column information is editable via a grid in which you can specify the names of the columns and their type,

length and main index. Create the table to match the following screenshot.

If you would like to, enter more columns;

you might want to store the size of their

shoes, their hobbies or an e-mail address.

Feel free to do so. The quick introduction

assumes you have created the shown

columns of the given type and size. To

identify a specific row in the People table

create the column PeopleId as a key-field.

In order to look up people, we will create a

couple of indexes. Let us suppose we want

| 6
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

to allow to search by LastName, FirstName and Zip. We need to create an index for each one of those columns and

each index need to be unique by itself.

The picture shows that the second index

consists of two segments: LastName and

PeopleID, the latter making the index

unique. Also notice that the checkbox

Ignore Case is checked. This means that

when a user searches on "Johnson" the

order in which it is found is not dependent

on whether it is typed as "JOHNSON",

"johnson" or "Johnson".

The tab has two toolbars. One - with the buttons "Add Index" and "Delete Index" – and this works on the list of

indexes making it possible for you to add or remove a complete index while the other toolbar works on the grid with

index segments. Change the order of index segments with the "promote" and "demote" tool-bar buttons if they are

in not in the desired order.

Save the table structure for the table People by pressing the Ctrl+S key-combination or click the Save tool-bar button.

The Business Rules

When a column is marked as a key-field

(‘Protect value (Key)’ attribute) the value

cannot be changed after the record has been

created. PeopleID is used to link the rows

between the later to be created Media table and

the People table and for this reason we do not

want to allow this value to be changed. To

indicate that the PeopleId column is a key-field,

we need to modify a setting in the data

dictionary for the table People. While the data

dictionary class is automatically created when

we created the table, it is not opened for

editing yet. To open the data dictionary, right

click the table in the table editor and select

"Open Data Dictionary" from the menu.

One new tab-page in the code editor part of the

DataFlex Studio will open and the focus will be

on the DD modeling tab.

Click the PeopleId column in the list of columns

and find the option "Protect Value (Key)" in the

list of properties as shown to the right. Change

the value of this setting from False to True

and the key field will be set.

While we are on this screen we can also add a couple more Business Rules:

 Make sure that the column LastName is always entered – select LastName from the columns list and set its

Required attribute to True.

 Make sure that the Zip and City are always stored in uppercase – select Zip from the columns list and change

the Capslock attribute to True; then repeat the same steps for City.

| 7
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

We need to save the table and data dictionary to disk. Either

save each one independently, or use the Save all option. If you

select the Save all option you also save changed source code

which might be a good idea anyway. You may still undo changes

after saving them as long as you do not close the file. Closing a

file would affect the undo stack and you may not be able to undo

all the changes.

Creating the People Zoom View

We can now create a data entry view and we will do so with the

Web Mobile Zoom View Wizard. Again, click on File, New and

now Web Object and the Create New panel just like the one

pictured on the right will be displayed.

As shown there are a number of wizards and

templates available. Highlight the ‘Mobile Zoom

Wizard' icon and press OK.

Following the suggested naming conventions in the wizard, enter the following information while processing the

wizard:

 oZoomPeople for the object name

 ZoomPeople for the filename

 People for the description

 Choose ‘Create a simple Form Web Zoom View’

 Choose the ‘People – cPeopleDataDictionary’ table

As shown, place all the columns on the View. Add two

tab-pages as indicated so related items will be grouped

together and there will be more space for entering

comments.

Module Types

In a DrillDown – Mobile/Touch web project we

have two kind of module types.

To view the data in one table row, a 'Mobile

Zoom View' needs to be created. Like the

name suggests, this type of view, 'zooms in'

on a selected table row.

To select a single row, a 'Mobile Select View'

needs to be created. This type usually

contains a list of rows found in the specified

table. For clicking a row in the select view, any

action that should be performed can be coded,

but the most common operation is to zoom

into a row using the mentioned 'Mobile Zoom

View' component.

| 8
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

On the next wizard page you can indicate whether you

want to see the labels aligned top (always placed on the

top side of the controls) or left and change the text of

each label. Change the labels for the tab-pages.

You can click the button labeled "Adjust and Display" to

see what your web data entry view would look like. Web

controls are laid out in a column based structure (this will

be explained in the next chapter named "Layout and

Positioning"). The number of columns (automatic or self-

calculated) determine the width of an input control and

the amount of controls that can be placed on a horizontal

line. Later – after the wizard finished the web component

– it is possible to change all the settings. We recommend

using the default values at this moment.

Click 'Next' and skip the final step (Assign Parent Lookup

Prompt) for now. Finish the wizard to be taken back to

the Studio. In the Studio, the result of the

wizard will be loaded automatically. You will see

the source code for the web view we just

created.

Press F7 to view the layout in the WebApp

Designer. By changing object properties you can

change its layout, labels and more. The object

properties are displayed in a panel that can be

activated by pressing the Ctrl+2 key-combination

(or via the View menu-item, Properties option).

If you did not change the labels of the tab-

pages, now is a good moment to change it. To

do this:

 Expand the object structure in the code

explorer panel

 Locate the oPage1 object

 Switch to the properties panel

 Locate the psCaption property

 Change the text of the first tab-page to "Address"

 Do the same – different label value – for the second tab-page

| 9
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Layout and Positioning

Before continuing developing the application let us take a look at how the

DataFlex Web framework uses a column and panel layout system to divide the

available space in the browser for positioning and sizing of the HTML objects. To

understand this better, take a look at the oZoomPeople object in the code

explorer window. Notice the view contains one panel (oWebMainPanel) divided

into two input controls and a tab-

container with two tab-pages. Each

tab-page has a couple input controls.

Let us first focus on the panel. It is

possible to divide each view – but also each panel into a maximum of five

panels. There can be one top, one bottom, one left, one right and one

center panel, controlled by the property named peRegion. In the

oZoomPeople there is only one panel and it is the center panel.

Each panel divides into columns, often

set to 12, making positioning

reasonable easy. Each HTML object can start in one of the columns (piColumnIndex) and can span a number of

columns (piColumnSpan). If piColumnSpan is set to 0 is tells the system to take all the columns defined in the panel.

The first column is column 0. If you want to combine two objects on the same "line", they must share the available

number of columns of the panel. This does not need to be done evenly.

The creation order of the objects and their column index / span determines the position of the objects.

Creating the People Select View

Before we are able to enter data via the Zoom View created in the previous section, we have to create a Mobile

Select View. A Mobile Select View will display a list containing the rows from the selected table.

We can create this view with the Web Mobile Select View Wizard. Once again click on File, New, Web Object and

select the ‘Mobile Select Wizard' icon in the panel.

As with the Zoom View, follow the suggested

naming conventions in the wizard, enter the

following information while processing the wizard:

 oSelectPeople for the object name

 SelectPeople for the filename

 People for the description

 Choose the People table

| 1
0
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

In the next step, we can select the fields for the view. As this view will show a list of all the rows, we do not want too

much data to clutter the list. For now, we will select the LastName, FirstName and City fields, as shown in the

screenshot.

When you click 'Next', you can choose how the view will

navigate forward when we select a record in the list.

Choose

Main

Zoom, as

we do

not have a child select view for now.

Now, we can determine where to the select view will take

us to when zooming into the list. In the Zoom View File

Name field we can click the three dotted icon which will

open a File Browser window. In this window, select the

ZoomPeople.wo file, which is the view we have created

earlier.

The wizard reads the name of the web view object and

shows this under 'Zoom View Object Name'.

In the next step, we can adjust the layout and alignment

of the list columns. Check the New Line checkbox for the

City field, and change its style to Detail.

The style change will show the city as a grayed out

detail in the row.

The New Line option increased the list row height, which

makes touch navigation easier. Use the Adjust and

Display button to preview the select view you are

creating.

| 1
1
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

WebApp Designer Panel

After you have finished the wizard, your Select View will be shown in the Code Editor as well as in WebApp Designer.

Press the F7 key if the designer is not present. That key will display and hide the designer whenever pressed.

Select a 'control' via a mouse click in an input field or a container. The designer and the code explorer show the

selected control. Click on a control, i.e. an input field or a container. The designer and code explorer show

information on the selected control and a control editor bar appears above the selected field or container.

If the selected control is a container, the control

editor shows the number of columns

(piColumnCount). Use the buttons to

increase or decrease this value.

If the selected control is an input field, the control

editor shows a different bar. Use the button to

change the starting column of the control

(piColumnIndex). Use the button to change the

number of columns used for the control

(piColumnSpan).

Finally, it is possible to drag the control to a different spot in the layout. This changes the object creation – and tab –

order. While dragging the object, the designer shows an I-beam image to indicate the insertion point.

Alternatively, it is possible to change the object order via the code explorer. Use the Alt+ArrowUp and

Alt+ArrowDown key combinations.

Note: It is not possible to change the column index by dragging the object

| 1
2
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Testing

You are now ready to test your DataFlex Web application.

Compile the project to do so. Based on the generated

source-code, the compiler will make an executable

(webapp.exe). Start the application after a successful

compilation. Select one of the following four ways to start

testing:

1. Press F8 to only compile

2. Press F5 to run. This launches the compiler if

needed

3. Choose the Project pull-down and select Compile

4. Click on the little green triangle icon in the

"debug" tool-bar

If you selected option 2 or 4, as soon as the compilation

is successfully finished, the application starts by opening

or attaching to your preferred (default) web browser.

As mentioned before, the application starts with a login

box in which you can enter "guest" for the login name

and the password. We will tell you more about the login

dialog soon.

In the top left corner of the screen you

will see three stacked bars. This icon represents the hamburger menu. This is the main menu of

the application, where all navigation options will be added to. You can bring up the menu by

clicking the hamburger icon.

In this menu, we can select the People

Select View by clicking on Views and then

People. This will show a list of all rows in

the People table.

If there were rows with People names in

the list you could click a row in the list and

navigate to the Zoom View for the selected

People row.

Since the People table does not contain any

data yet you will see an empty list. You can

add new People rows by either clicking the

three dots in the top right corner and

selecting 'New' or press the 'New' icon (first

icon left of the three dots). The icons

('New' and 'Search') and the menu items

are called an action group and they can be

customized per view. The wizard generated

the current action group in the People

Select View.

You can configure the DataFlex Studio to not

opening your browser (Internet Explorer, FireFox,

Chrome etc) each time the F5 key (or run button) is

pressed. Open the application only once via the

context menu in the workspace explorer and refresh

the browser window when the application was

changed and layout changes need to picked up by

the browser.

| 1
3
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

For now; click the 'New' icon which navigates into

the People Zoom view. Because the desired

action is creation of a new People row, the zoom

view will not show any data and all input fields

are enabled so that a new People row can be

created.

Enter the name of a person. The screenshot

shows Santa Claus living at the North Pole. After

entering the details click the save () button.

If the zoom view was opened by selecting a

People row, the view would show the details of

the People row in read-only mode and you

cannot edit the data in the fields until you

explicitly select 'Edit'.

Opening in read-only mode is the default,

because on mobile/touch devices, data viewing is

more common than data entry. This read-only

mode can be turned off in the Web Mobile Select View wizard. To edit the data you can click the edit icon in the top

right of the screen, next to the three dots of the

action menu. When in edit mode, you can find the

following options in this menu:

 Save: Saves the changes made

 Delete: Deletes the currently selected row

 Clear/Add: Refinds the currently selected row, all changes are lost

Another component worth mentioning is the breadcrumb trail just beneath the blue menu bar. This will show you

where you are and which drill down options you have chosen. With each breadcrumb you can easily navigate back to

the select view, or the dashboard. The text displayed on the breadcrumb can be changed from source code. We will

tell you later how to do this.

Close the browser application to return to the Studio. Sometimes closing the debugger does not close

the run mode of the Studio. You can stop the running mode by clicking the stop button.

Login System

As you have seen in the preview topic, a login dialog is displayed as soon as the application starts, but that can be

changed. Each DataFlex web application contains a session management system consisting of a user and a session

table. The session management is a requirement but the login is not. You might want to allow everyone to use the

application so no login dialog is needed. You might want to offer special features depending

on the user accessing the application and, in that case, the use of the login dialog makes

sense.

To make testing easier, you can turn off login during the development phase of web

applications. To do so, make webapp.src the current tab-page in the DataFlex Studio and

click on the oWebApp object in Code Explorer. In the properties panel locate the

peLoginMode property and change it from lmLoginRequired to lmLoginNone. For

applications that offer additional functionality after logging in, you may want to use

lmLoginSupported instead.

| 1
4
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Dashboard Tile Link to Login Page

The Dashboard, by default, shows the currently logged in user in the 1st tile. We can enhance this tile to change user

information or to go back to the login page. To go to the login page use the following steps:

 Set the pbServerOnClick of the oWelcomeTile to true.

 Add the OnClick event via the events tab-page in the object properties.

 Write "Send RequestLogout of ghoWebSessionManager" in the OnClick procedure

 Insert data-ServerOnClick="LoginAgain" in the first div element of the HTML code of the UpdateHTML

message in the OnLoad event. Without this the OnClick event will not fire!

Media Table

The creation of the table for the Media is the

next step in our process. So click again the New

Table button in Table Explorer. Enter the value

"Media" for the table and the root names. Then

create the columns as shown in the picture.

Note:

 In the column Type we want to keep track of

if it's a CD, DVD, BOOK etc.

 The PurchaseDate is of the type Date.

 The Price is numeric with the 4.2 format. This indicates that the price can have four digits before and two after

the decimal point.

 The column PeopleID will be used to connect Media with People. We will, therefore, ensure that it is of the same

type (numeric) and same size (6 digits) as the column in the other table.

MediaID will be the key field. Create an index for it as well as for Title, Author and Type. To make those indexes

unique, add MediaID as last segment of each index and select the Case Insensitive option.

Tip: Until now we have explained that an index is there to quickly and easily find a record. Indexes have another

important function, which is fast sorting in lists/reports. It is not difficult to create more indexes at a later time if you

need this for certain lists/reports.

The Media table contains information about rows of our media in the possession of a certain person. In technical

terms this means there is a relationship between the tables Media and People.

Therefore, let us create the relationship between the two tables. Choose the tab-

page named Relationships and choose the first tool-bar button (Add relationship).

A dialog with tables pops up and you should select the table People from this list.

Relationships are almost always defined from many to one, so in this case, from

Media to People.

The selection of the parent table opens

the option to specify from which child

column(s) to which parent column(s)

the relationship is made. The type and

length of the related columns must match and the parent column (usually

the key-field) must be uniquely indexed. The current table layout meets these criteria.

The Business Rules for the Media table

Finally, we will add some more Business Rules in the Data Dictionary. For this, the table needs to be saved first. The

MediaID column will be a Key Field and the Title column is required. You should be able to do this with the guidelines

given with the People data dictionary.

| 1
5
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

The values for Type should always be entered in uppercase (the Capslock attribute

needs to be selected), but let's add something extra. We want the user to use

consistent naming when entering Media Types. Enter 'CD' if it is a CD-Rom, enter

'BOOK' if it is a book. Not consistently entering such details makes report selections

(such as 'Show me all books') quite difficult. Therefore, we will make a simple

validation table on the column Type. You do this via the Validation Objects tab-page. Click the "Add Validation

Object" button select the 'Type' column under

'Apply to Column' and 'Description Validation

Table' for the type. Enter 'oMediaTypes' for

the object name. Object names at this level

need to have a unique name.

After you clicked the OK button you can start

entering values for the table. We suggest you

enter the values as shown.

Feel free to add more optional Types.

Via the Allow_Blank_State property of the oMediaTypes validation table you can indicate

whether the value may be left blank or not. If the value is not set to True the user must

select a value from the list when creating or editing a

record. Configure this setting as you please.

To get a list of the media types in

any web view to be constructed

you have to change the visual

control of the Type column in the Media data dictionary class.

Tip: As a side note, open the tab-page called Structures and you will see that the

People table is added to the structure with Media. This is a hint that validations do not

only apply to single tables; related tables are also validated.

Creating the Media Mobile Views

Media Mobile Zoom View

For viewing and editing Media records, we will need a Media Mobile Zoom View and a Media Mobile Select View.

First, we will create the Zoom View, just as we did with the People table. This time the wizard will not be used to

create the view. This means you will learn how to make a data entry view in a less automated way and will have

more control over what happens.

A new concept: Data Awareness

Before we continue, let us explain a new concept: Data Awareness. DataFlex is a tool to build database

applications. After the first sample, we saw that it takes a View (interface) to enter data into the database.

The several components in the interface are apparently coupled to the underlying columns in the tables. That

is right, that is exactly what happened. But in fact there is an extra layer in between; the Data Dictionaries.

DataFlex knows different types of components. An important difference is whether components are 'data

aware', or not. If they are, you only have to assign Data Dictionary objects (DDO's) to it in order to have the

desired data (tables) at your disposal. Data aware web controls make use of data binding usually via an

Entry_Item statement.

| 1
6
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

From the menu under File, choose New, Web Object, but now click on:

Mobile Zoom.

After that, enter "oZoomMedia" for the object name and the file on disk

will be named ZoomMedia.wo.

Tip: The dialog shows that the component will be added to the project

WebApp.Src.

You are now looking at a very basic cWebView in the Studio that

contains some containers, dummy input controls and some comment.

The first thing we need to do is to decide which tables we want to maintain in

this View.

In the menu, under View, open DDO Explorer (or press Ctrl+4).

As you can see the DDO Explorer shows no selected tables. Click the "Add DDO" button to adding a DDO. You can do

the same from the floating menu (right click on "DDOs for..").

In the dialog that opens, you have to select the right data dictionary for this new view.

Since we want to edit (create, modify, delete) the

table Media, select the cMediaDataDictionary class (highlighted in the picture).

The Studio automatically makes the DDO

for the Media table the main DDO and

because Media has a relationship to a

parent table (People), the DDO for that

table will also be automatically added. When the choices are not correct,

you can change these via the floating menu on each of the DDOs and apply

the change. In

our example

this is now

correct, so no

action needed.

From the DDO Column Selector select all columns of

Media (select all but the Recnum checkbox) and drag

them onto the view source

code or into the WebApp

Designer. If inserting them

in the source code drop at

the location shown in the

picture marked with the red

outline.

Similarly, drag & drop the

column LastName from

cPeopleDataDictionary onto

the source just after the

"PeopleId" cWebForm object just created during the first

drag & drop.

The dummy input controls and groups in the panel

should be deleted.

| 1
7
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Show LastName & FirstName Together

Would it not be better if the People LastName input field was positioned after the PeopleId input field, instead of

underneath it? Yes, of course. Since we covered how the layout system works, you should be able to make that

change. Each container is divided into columns (also indicated in the data entry wizard). The default number of

columns for a container is 12. An input like the PeopleId does not need 12 columns or the full width of the cWebView

and that "line" can be shared with other controls, such as our "LastName" control.

There are three ways to change the number of columns

used by the control:

 By selecting the object in the code explorer

and change the piColumnSpan via the

properties panel to 3

 By selecting the object via the WebApp

Designer and use of the button.

 By locating the object in the code editor and directly change the piColumnSpan value. Tip: click the object in

the Code Explorer and select the "Locate in Editor" floating menu option.

Use one of the above techniques for the oMedia_PeopleId object or try them all to see what you like the most.

After changing the piColumnSpan, the LastName

object does not move yet as its piColumnIndex (now

0) needs to be changed to the same value as the

piColumnSpan of the oMedia_PeopleId object. The

result will be as shown to the right.

Date Selector

The input controls created by the wizard or the templates are "simple" controls. With

a minimum of effort, you can make controls more powerful – e.g. present an icon

that a date may be selected from a date selector box, which is displayed as soon as

the user clicks the icon.

Locate in the source code the oMedia_PurchaseDate object and change the class

name of the object to cWebDateForm. The code needs to be changed into the

following:

Object oMedia_PurchaseDate is a cWebDateForm

 Entry_Item Media.PurchaseDate

To complete the operation, jump to the top of the source code and insert the following line between the already

present USE statements.

Use cWebDateForm.pkg

This addition makes the component autonomous and includes the corresponding DataFlex class necessary to make

the control work.

Display the Album Cover Image

Likewise, we can change the oMedia_Picture object to show an image instead of a filename. Locate the object in the

source code and change the class name to cWebImage. Change the code into the following:

Object oMedia_Picture is a cWebImage

 Set piColumnSpan to 3

 Set pePosition to wiCover

| 1
8
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Now the control needs to be instructed to grab the image stored on the server and transfer it to the client. Each row

from the Media table may have an image or not. Technically the images can be loaded from a Web public accessible

folder (sub folder of AppHTML) or from a folder that is only available by the DataFlex Web Application. In this

paragraph, we will explain the use of the take the private folder location. Let us name the folder AlbumCovers and

make it a sibling of AppSrc, Data etc. To retrieve the folder location we will create a method (a function) in the

oApplication object (found in the WebApp.src file). Change the oApplication object as follows:

Object oApplication is a cApplication

 Function AlbumCoverFolder Returns String

 Handle hoWorkspace

 String sFolder

 Get phoWorkspace to hoWorkspace

 Get psHome of hoWorkspace to sFolder

 If (Right (sFolder, 1) <> "\") Begin

 Move (sFolder - "\") to sFolder

 End

 Move (sFolder - "AlbumCovers") to sFolder

 Function_Return sFolder

 End_Function

End_Object

To be able to test the display, create a folder named AlbumCovers in the root of the workspace and add a couple of

images there. Use – for now – Database Explorer (or the Table Viewer) to connect a Media row to an image by

placing in the name of the image file in the column Picture.

To show the image stored, the following method (DisplayImage) needs to be added to the oMedia_Picture object.

Procedure DisplayImage

 String sFileName sFolder

 Move (Trim (Media.Picture)) to sFileName

 If (sFileName <> "") Begin

 Get AlbumCoverFolder of ghoApplication to sFolder

 Move (sFolder - "\" - sFileName) to sFileName

 Send UpdateLocalImage sFileName

 End

 Else Begin

 WebSet psURL to "about:blank"

 End

End_Procedure

This method needs to be called from OnNavigateForward event of the oZoomMedia component. In that event add:

Send DisplayImage of oMedia_Picture

| 1
9
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

The UpdateLocalImage method converts the server file

path into a download link that is only accessible from

within the current Web Application Session, which means

that copying the URL (for example into an e-mail) will not

work.

Register the download folder as a valid download folder

by sending a RegisterDownloadFolder message to the

resource manager object. Add the following method to

the oWebApp object:

Procedure RegisterAlbumCoversFolder

 String sFolder

 Get AlbumCoverFolder Of ghoApplication to sFolder

 Send RegisterDownloadFolder of ghoWebResourceManager sFolder

End_Procedure

Then call the method prior to the start of the Web Application. Change the last lines of WebApp.Src to:

End_Object

Send RegisterAlbumCoversFolder of oWebApp

Send StartWebApp of oWebApp

More space for the Comments

It would make sense to give the comments input control more vertical space and therefore switch the location of the

oMedia_PeopleId / oPeople_LastName controls in the object order with the oMedia_Comments object. Select one of

the following three techniques:

 Select the oMedia_Comments object from "Object" to "End_Object", the press Ctrl+X to cut the code, move

the insertion cursor in the code to the new location and press Ctrl+V

 An easier way would be to locate the object oMedia_Comments in the Code Explorer and press the

Alt+DownArrow) key combination twice. The first time the object will move between the objects

oMedia_PeopleId and oPeople_LastName and the second time it will move the end. This object order

change can also be done via the buttons in the tool-bar of the Code Explorer or by selecting the

corresponding menu options in Code Explorer’s floating menu

 The WebApp Designer offers the third way to move the object: select the object and drag it to the location

behind the LastName object

Finally, to give more space to Comments, locate the property pbFillHeight of the oMedia_Comments object and set it

to true. This means that this object takes up all the vertical space left between the previous object and the bottom of

its container. Each container can have multiple objects with the pbFillHeight set to true but it is better to limit its use.

Displaying LastName and FirstName combined

Changing the behavior of the LastName WebForm

control into showing both the LastName and FirstName

values at the same time is a relatively easy job. For this

select the oPeople_LastName object in the Code

Explorer and then activate the properties panel (Ctrl+2).

On the tab-page named "Events" double click the

OnSetCalculatedValue event. The procedure appears in

the source code. Now add

Move (People.LastName - ',' * People.FirstName) to sValue

| 2
0
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

in the procedure (it does not matter where as long as it is between "Procedure" and "End_Procedure" and that it is a

full line of source code.

Set the pbEnabled property of the control to false because it makes no sense that a user can enter a value in a

display control.

Person select view for Media

When we want to add a person to a media row, we can fill in the PeopleID field, but of course, we will not know the

corresponding ID for every Person. We want to be able to look up the Person. We can do that by adding the

SelectPeople view to the PeopleID form as a Prompt.

1. Open your MediaZoom view

2. Locate the oMedia_PeopleId object in the code explorer

3. When selected, change its property pbPromptButton to true

4. In the object, add the following code:

WebRegisterPath ntNavigateForward oSelectPeople

Procedure OnPrompt

 Send NavigatePath

End_Procedure

This will make a lookup icon appear in the PeopleID form and if clicked, users navigate to the SelectPeople view.

Media Mobile Select View

Now, we also have to create a Web Mobile Select View for Media. Again, from the menu under File, choose New,

Web Object, but now click on Mobile Select. Name this view 'SelectMedia'.

As with the just created Zoom View, add the Media DataDictionary, and add the Title and Author fields to the

oWeblist object. Delete the dummy column object, named oColumn, created by the template.

We now have two separate views for Media data: a select view and a zoom view. We have to make some code

changes to zoom in on a Media row from the Media Select View. To do this, follow the next instructions:

Locate the oList object in the Code Explorer and inspect its code in the code editor. There are two procedures

already created in this object (OnRowClick and OnGetNavigateForwardData) which deserve a closer look.

The OnRowClick event (procedure) we can define what will happen when we click the row. There are several cases

defined here by default, which determine from where you have navigated. In this case, our starting point is the main

menu, which is not one of the 'nfFrom' navigation types and so we must implement that in the case else statement.

For more information on this, see the help article 'The Forward Navigation Process'.

Passing data to the destination component upon navigation is possible through the OnGetNavigateForwardData

event. Information like the behavior in relationship to this view.

Replace the code in the Case Else statement of this procedure so it will be as follows:

Procedure OnRowClick String sRowID

 tWebNavigateData NavigateData

 Get GetNavigateData to NavigateData

 Case Begin

 Case (NavigateData.eNavigateType=nfFromParent)

 //not used

 Case Break

 Case (NavigateData.eNavigateType=nfFromChild)

 //not used

| 2
1
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

 Case Break

 Case (NavigateData.eNavigateType=nfFromMain)

 //not used

 Case Break

 Case Else

 Register_Object oZoomMedia

 Send NavigateForward of oZoomMedia Self

 Case End

End_Procedure

When you compile the project, you will be able to navigate from the select-view to the zoom-view when you click on

a row!

The created select view contains a button labeled 'New' but where this automatically worked in the SelectPeople

view, we need to add code in the SelectMedia. The reason is that this component was created via a template and the

template does not know or ask if the select-view should navigate into a zoom-view. Locate the object named

oNewButton and correct the OnClick event code to:

Procedure OnClick

 Register_Object oZoomMedia

 Send NavigateForward to oZoomMedia Self

End_Procedure

Link Dashboard Tiles to Views

Knowing some views are more often used than other views, we should provide a link to the most used views from

the dashboard, so that the users do not have to use the hamburger menu. The generated dashboard contains four

predefined tiles and we can even extend them quite quickly.

Say we want to add a link to the SelectPeople view, so the user can quickly find a person in the system. To do that,

start by opening the Dashboard view and locate the object named oTile2 and rename the object to oPeopleTile so

that it is easier to see the purpose of this tile. The OnClick procedure contains commented out example code.

1. Uncomment the code by removing the slashes at the beginning of the lines

2. Replace the 'oYourViewName' placeholder by the object name of the view you want to link to. Use

oSelectPeople.

The tile must also tell the user where its link will lead. As it is an HTML box, we must edit the psHtml property of the

object. You can leave most HTML as is, but change the text between the div tags of class 'Tile_Title'. This will say

'Tile 2'. You can change it to whatever you desire, but in this case, 'People' will do. Now, when you compile and run

the project, the second dashboard tile will say 'People' and lead you to the SelectPeople view.

Link the 3rd tile to the Select Media view based on above information.

Automatically Generate Key Fields

For People as well as Media we defined unique, numeric keys. This number stored in those

key fields is not relevant to the user and it would be even troublesome for users to try to

remember what the last given number was when they try to create a new Media or Person

row. In order to make the interface work better with those premises in mind, we will add a

system table to the application:

1. Create an extra table. In this table we will always store only one (1) record. This is

called a system table. In this table we define two columns only: LastPeople and LastMedia. These columns are

numeric, 6 digits.

| 2
2
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

2. The Data Dictionaries of Media and People will take care of generating

these ID's automatically, using the system-file.

To make sure it actually becomes

a system-file, select True for the

“is system file” table attribute.

Save the table structure before

continuing.

We want the Data Dictionaries to automatically increment the IDs each time

a new row is saved. Open the data dictionaries for the tables People and

Media in the Studio. Look for the attribute Auto Increment (grouped under

Other) in the list of properties for the columns PeopleID (in People) and

MediaID (in Media) and click the prompt button. From the list of tables,

select System and from the columns, the correct source data column –

those are LastPeople for PeopleID and LastMedia for MediaID.

Note: The value can be taken from a system table or a parent table. That is why

you see the checkbox labeled "Show System and Related Tables Only".

Ok. This should work, if not it is because you have already created some records,

with ID's 1, 2, 3 etc. The first time we will use our automated increment function it

will try save a record with ID of '1' and that will not work because that value already exists. ID's should always be

unique – it is a key field! Our new application cannot save any new rows. We could delete our existing rows, but

there is another way to solve this. Right click the "System" table in the Table Explorer and choose "View Table". The

contents of the table will be displayed in a tab-page in the design area of the Studio.

Let us assume that the last ID you have entered was 10. Then enter the value 10

for both the LastPeople and LastMedia. Next time a record is created, the IDs will be

automatically set to 11.

As an alternative you can do the same – and more – via another useful tool from the

Studio Tools menu: Database Explorer.

Database Explorer (often called

DBExplorer) provides a quick means to

directly edit data in tables. It is a

typical tool for developers, but be

careful if you use it as it bypasses any

safety or validations you have built

into your applications through data

dictionaries etc.

The first thing we have to do

is to make it possible to

change data. By default, Database

Explorer is configured in its most

secure mode, which is to only allow us to read data. Therefore, click on the little icon at the very bottom-left. Change

it from a red colored icon to a gray colored one. This is a one-time change; if you want to allow the read-write

operation each time you open a table; open the configuration dialog by selecting File |Configure and look for

"Open/Set Tables Readonly" under Flags and Table tabs and unselect it. Then press OK to save your setting.

Data Dictionary changes

Before we compile and test our application, let us make a couple more improvements. Open the Media and People

data dictionaries if they are not already open.

| 2
3
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Set the AutoFind EQ and the NoPut attributes In the Media data dictionary for the column MediaId to true. Do the

same for PeopleId in the People data dictionary.

Locate the Status Help attribute and enter some status help text for some columns. You will see this appear as tool-

tips in the web pages. Use your own imagination.

Select the PhoneNumber in the People data dictionary and change the Capslock attribute to true. If you enter a

phone number like 0800-CALLSANTA the characters will display uppercased.

Summary

We have made the following improvements:

 The ID's for People and Media are automatically serialized/incremented

 Entering data for Media Types now makes much more sense. Typed values will always be uppercase, a selection

can be made from a combo-box, which is the appropriate visual control for this type of data-entry

 The framework automatically disables the data-entry in the MediaID and PeopleID controls through setting of

the AutoFind EQ and/or the NoPut attributes when navigating into a zoom view. Setting only the AutoFind EQ

attribute disables the controls when navigating into a zoom view with an existing Media row while setting NoPut

to true disables the controls also when creating a new Media row

 Setting the Appearance of Media.Type in the data dictionary to Combo, this column will always be displayed as a

combo-box by default

 Help will be displayed for some items in the form of a tool-tip

Show All Media Borrowed

Let us do something a bit more advanced. So far we created select views to navigate into a zoom view but would it

not be great if we could browse through People and display all media that each person has borrowed? Instead of

creating a new select and zoom view we will change the behavior of existing views.

Open the Select People view if it is not opened. Clicking on a row in the list currently navigates to the ZoomPeople

view. Change the destination from oZoomPeople to oSelectMedia. This will make the selection a real drill-down

selection. If you followed the instructions when creating the select view via the wizard, you do not have to change

the behavior of the little info button as it already navigates to the People zoom view. If it does not, of if you want to

check the code, locate the OnClick event in the oDetailButton object and either implement a forward navigation to

the oZoomPeople view or check if it already does this.

Compile your project and open the People select view in the browser. Now, when clicking the detail button, the list of

media borrowed by the selected person will appear in the list. Clicking the little info button brings you to the details

of the selected person.

Breadcrumb Information

By default, the breadcrumb shows the value of the psCaption property of the view. Because the select Media view

can now show all rows from the Media table or only the rows connected to a selected person it makes sense to

change the breadcrumb caption dynamically. We can do this in the OnNavigateForward event. The view can be

opened from the hamburger menu, a dashboard tile or from the People select view. In first two cases the navigation

type is nfUndefined, when opened from the People select view the navigation type is nfFromParent. Let's use this

information to change the value shown in the breadcrumb. Change the OnNavigateForward event to:

Procedure OnNavigateForward tWebNavigateData NavigateData Integer hoInvokingView ;

 Integer hoInvokingObject

 Case Begin

 Case (NavigateData.eNavigateType=nfFromParent)

 Send SetBreadcrumbCaption ("Media Borrowed by:" * People.FirstName ;

| 2
4
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

 * People.LastName)

 Case Break

 Case (NavigateData.eNavigateType=nfFromChild)

 // If from child, this is a probably a parent lookup from a Zoom

 Case Break

 Case (NavigateData.eNavigateType=nfFromMain)

 // This is not used much with the drilldown style

 Case Break

 Case Else // must be nfUndefined

 Send SetBreadcrumbCaption "All Media"

 // This may be the start of a drilldown query or this may be used for some kind of

 // custom query. You may have set NavigateData.eViewTask to provide more

 // information about this.

 Case End

End_Procedure

The semi-colon usage and comment changes are not needed, they are present 'just' for this Quickstart.

Show the Album Cover Image While Selecting Media

With a little enhancement we can make the application again more attractive. We will add

the Album cover to the Media select view. For this we need to add a column to the list that

can show an image. Open the SelectMedia view if it is not opened anymore. Locate the

details button column in the WebApp Previewer (press F7 if the previewer is not active) and delete the column by

right clicking and selecting delete from the floating menu.

Now open the class palette. If it is not in one of the docking panes (the default is the left hand side docking

pane) press the class palette button in the tool-bar. Locate the

cWebColumnImage entry on the Class Palette and drag it onto the list. Change or

set the properties shown in the image on the right to the shown values.

The most important property in the list for our implementation is the pbDynamic

property. By setting this to true we can make sure the list shows a different image per

row and album covers are usually different per DVD or CD. With pbDynamic to true the

control fires the OnDefineImages event for each created list row. If you add the following code you will get an image

per row.

Procedure OnDefineImages

 String sFileName sFolder sUrl

 Forward Send OnDefineImages

 Move (Trim (Media.Picture)) to sFileName

 If (sFileName <> "") Begin

 Get AlbumCoverFolder of ghoApplication to sFolder

 Move (sFolder - "\" - sFileName) to sFileName

 Get DownloadURL of ghoWebResourceManager sFileName to sUrl

 Send AddImage sUrl

 End

End_Procedure

| 2
5
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

In the code above, the function AlbumCoverFolder returns the location of the images folder. First, the routine checks

if the Picture column in the current Media row contains an image (file) name and if this is true, it is append to a path

where the images are stored. The

function to return the path was added

while enhancing the Media Zoom view.

The result of the Media select view can

be as shown in the picture on the right.

Wildcard Search View

Would it not be nice to have a web view

where you can enter a text value that is

used to filter the Media? Of course, you would like to have this! Here is how to do this.

 Create a new web view, use this time a Web View

 Drop a cWebForm, a cWebButton, a cWebCheckbox and a cWebList control to the view. Change the name

of the cWebList object to oMediaList

 Align the button and the checkbox with the form on the same "line" giving the form more columns than the

other two controls. For example: set the piColumnSpan of the form to 8 and divide the rest of the default

number of columns (= 12) between the checkbox and the button

 Label the form "Filter on:"

 Label the checkbox "Case Sensitive"

 Label the button "Search!"

 Drag some data columns (Title, Author, Price…) from the DDO Column Selector (in the DDO Explorer) to the

cWebList object

To get the list fill automatically when the view opens, add the OnNavigateForward event to the view (via the object

properties, events tab-page or directly in the code) and inside the event add the following:

Send FindFromTop of oMediaList

To filter the data in the list we need to make use of the OnConstrain event in a DDO, in the oMedia_DD object to be

precise. In this event, we need to code the condition for the filter. We will make use of a "constrain as" technique.

The use of "constrain as" should be avoided as the filter cannot be optimized but in this situation it is OK as long as

the number of rows in the table is not too large.

Add the following code to the oMedia_DD object:

Procedure OnConstrain

 Constrain Media as (IsValidMediaRow (Self))

End_Procedure

Now write the following IsValidMediaRow method in the oMediaSearch object:

Function IsValidMediaRow Returns Boolean

 String sFilterValue sData

 Boolean bCaseSensitive bOk

 WebGet psFilterValue to sFilterValue

 WebGet pbCaseSensitive to bCaseSensitive

 Move (Trim (sFilterValue)) to sFilterValue

 If (sFilterValue <> "") Begin

 Move (Media.Title * Media.Author * Media.Type * String (Media.Price) * ;

 String (Media.PurchaseDate) * Media.Comments * Media.Picture) to sData

| 2
6
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

 If (not (bCaseSensitive)) Begin

 Move (Lowercase (sData) contains sFilterValue) to bOk

 End

 Else Begin

 Move (sData contains sFilterValue) to bOk

 End

 End

 Else Begin

 Move True to bOk

 End

 Function_Return bOk

End_Function

This method concatenates all columns we want to search and looks if the filter string is present in that value. You

can increase or decrease the number of columns to compare with. The filter makes use of two self-defined

properties (psFilterValue and pbCaseSensitive). Create them in the oMediaSearch object by adding:

{ WebProperty = Server }

Property String psFilterValue

{ WebProperty = Server }

Property Boolean pbCaseSensitive

The properties will get their value when the search button is clicked. Change the contents of the button's OnClick

event.

Send SetupFilters

Send FindFromTop of oMediaList

Add a self-defined method named SetupFilters to the oMediaSearch object. The code for this method is:

Procedure SetupFilters

 String sFilterValue

 Boolean bCaseSensitive

 WebGet psValue of oSearchForm to sFilterValue

 Get GetChecked of oCaseSensitiveCheckbox to bCaseSensitive

 If (not (bCaseSensitive)) Begin

 Move (Lowercase (sFilterValue)) to sFilterValue

 End

 WebSet psFilterValue to sFilterValue

 WebSet pbCaseSensitive to bCaseSensitive

 Send Rebuild_Constraints of oMedia_DD

End_Procedure

Compile and test your new search view.

| 2
7
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Reports and Lists

One of the most powerful ways to create reports and integrate them in DataFlex is by using DataFlex Reports and

the DataFlex Reports Integration Library. The report integration wizard automatically integrates a report in your Web

application. The end-user will be able to start the report from the menu and still be able to adjust the sort order,

output device, as well as the selection criteria. It is simple: First create a report with DataFlex Reports, and then start

the wizard – the rest is self-explanatory.

Note: If you do not have a license for DataFlex Reports, please contact the Data Access sales representative in your

region to receive an evaluation license, or to purchase a license.

Start DataFlex Reports and select File, New. Then choose Standard Report. You can also press the Ctrl+N key

combination. In the wizard select DataFlex as your data

source and point to the SWS file of your workspace (in the

root folder).

This will load the paths of the workspace and shows the

contents of a file called the filelist. Select the Media table

from the list of tables.

After clicking the 'Next'

button, you have to

select which columns

from the Media table

should appear in the

body section of the

report. The body

section of a report repeats for

each row that matches selection

criteria set for the report. In the

'Fields' page, select the columns

Title and Price.

The next wizard page let you select the column(s) to

group data on. Here we select the column Author. This

means that printing of titles per author is possible.

Skip the summary, data filters and repository pages for

this report.

| 2
8
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

After finishing, you may preview the report in the designer and start making the first layout modifications.

Look at the screenshot of the report in the designer and see how we used colors to 'beautify' the report. We also

added a function to combine the Author name with the number of Media rows we have for this author. Each Author

name has a total on Price of their titles and the page footer contains a 'Page N of M' text.

A feature that is not shown but interesting: we can sort the details of each group on Title or any other column.

DataFlex Reports developer edition optionally installs an integration library. Attach the workspace to the library by

selecting Tools, Maintain Libraries. In the dialog that pops up you will see the already connected libraries.

Press the "Add Library" button to select the SWS file of the DataFlex Reports integration library. The library is most

likely installed in a folder called Libraries inside the DataFlex environment. If not look for \Libraries in the root of the

installation disk (e.g. c:\libraries). You select the location during the installation of DataFlex Reports Developer

Edition. After clicking OK, a wizard starts that guides you through the process of attaching the library. You should

accept all the defaults. The wizard copies files and makes modifications to the main (often the index.html) file. Check

if you can still compile and run your web application. It should still work!

To integrate the report, we start the integration wizard. Select File, New, Web Object and pick the DataFlex Reports

Integration Wizard. Note that there is also a wizard for Windows programs but you need to one in the Web Object

page.

| 2
9
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

In the wizard you can choose between connecting to an existing report or create a new RDS based report. Choose

connect to an existing report. Then, on the next page, select the report that you want to integrate. You can preview

the report but keep in mind that a preview might take

some time when you have more data than what we have

in this Quick introduction workspace.

After clicking the 'Next' button you can select / confirm the

application style. Use the 'DrillDown – Mobile/Touch'

option.

In the next wizard page you can choose to create user

defined selection criteria controls. Based on the user input,

report data will be filtered.

Select the columns Type, Price and PeopleId. Using

selection criteria can be very important when you do not

want to build a 500+ pages report – it takes too long for

the average impatient web user and it makes no sense to

view so many pages over the web. You might even want

to check if the user made selections or not.

Because we selected columns for selection criteria

controls, on the next wizard page you may specify the

values of the labels for the selection controls and whether

the labels should be visible, aligned left, right or centered

and positioned left or on top of the control on the next

wizard page. Either accept the defaults or make a label

text modification to see how this works.

Also based on selection criteria, you may specify the filter

operator and whether you want a 'from-to' selection or

selection on just one value.

Change the operator for the Price column to 'greater than

or equals' for the 'From' column and 'less than or equals' in

the 'To' column.

In the next wizard page you can connect a selection

control to a web selection view. The PeopleId column can

be connected to the select view for People made earlier in

| 3
0
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

this Quickstart. To do this, place the cursor in the 'From' grid item for Media.PeopleId and click the prompt button.

Then select the 'SelectPeople.wo' file from the Windows common file dialog. On return the object name of the select

view will be shown in the grid.

The next page shows the sort order defined in the report

(if present). In the MediaList report this is the Title

column. Add a couple of more sort fields like PurchaseDate

and Price. Turn on the option that the user can change the

sort order. If not turned on the data will be first sorted on

Title, then on PurchaseDate and then on Price. With user

selection, the user can determine what sorting should be

used. Optionally you can choose to generate a multi-level

sort order control, but for this report integration you

should skip that.

If the report contains formulas you will see a wizard page

showing the formulas and you can select whether you

want the wizard to generate code to change the content of

a formula. The MediaList report contains one formula

but it is not a candidate to be changed at runtime.

The next important wizard page is the output

selection. Here you can choose from the supported export formats (PDF, Image, HTML, Excel, Word and CSV). Base

on the first choice, the destination drop-down will change

and offer more or less destination options.

For (DrillDown Mobile-Touch style) web applications, the

default will be HTML through a HMTL previewer control. If

the user wants an extra/different output, they can select

'Export' after viewing the results.

The wizard will create one or two web components based

on the choices made during this wizard session. In our

case two components will be created and you have to

specify (or simply accept) the names for the objects and

component filenames twice. As suggested names, the

report name is appended with 'Select' and 'Results'.

On the next wizard page you can select a language for

localized strings in the report and, if the report is based on

ODBC, elect if you want a routine to be written out to

change the ODBC connection at runtime.

Finish the wizard and compile / run the web application. You will find the report under 'Views'. You can re-arrange

reports under their own menu item labeled 'Reports' if you like.

| 3
1
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Tip: Read one or more of the blogs about DataFlex Reports integration at the Data Access web site

(http://support.dataaccess.com/Forums).

Picture Selector & Upload Views

If you are still hungry… we can extend the project with a view for selecting from all available album cover images

and a view to upload a new cover image to the system.

Picture Selector View

Go to the Create New dialog in the Studio one more time and create a Select View. Do not use the wizard as the data

will not be read from a database but from the file system. Use oSelectAlbumCover as the name of the select view.

Select the cWebList object and change the name to oFilesList. Change the pbDataAware property to false. Then

create two columns. Name the first column oFileNameColumn and base it on the cWebColumn class. Name the

second oPictureColumn and base it on the cWebColumnImage class. Set the properties of this image column identical

to the image column in the select media view.

To get data (filenames and the image) into the list we need to implement the OnManualLoadData event. Add this

event to the object via the object properties panel. When the list needs data, it fires this event passing the current

data via an array. Use the same array to add extra (or changed).

Inside the OnManualLoadData routine, we start with getting the path to the AlbumCovers folder in the workspace.

This has been done twice in this Quickstart, so look it up.

Filenames can be read from disk via a DIRECT_INPUT

command passing the path and a device constant

'DIR:'. Each directory entry is read with a READLN

statement. Sub-folder entries can be recognized by

the first character of the directory entry; if it is a

square bracket, it means it is a folder. This is not a

DataFlex invention, it is how the operating system

passes the information to the virtual machine (open a

Windows CMD window and enter 'DIR /w' if you want

to see this).

Each 'valid' directory entry (a filename that we want to have in the list) is used 3 times for each list row.

http://support.dataaccess.com/Forums

| 3
2
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

First the value inclusive the path is used as row identifier. Each list row needs to have a unique row identifier and the

file plus path from that unique identifier. It also is needed to identify for the caller object what file the user selected.

The second use is to show the name of the file to the user and the third use is to show the contents of the image file

as picture.

Study and copy the following code to get the manual list working:

Procedure OnManualLoadData tWebRow[] ByRef aFiles String ByRef sCurrentRowID

 String sFolder sFileName

 Integer iChannel iRow

 Move (Seq_New_Channel ()) to iChannel

 If (iChannel >= 0) Begin

 Get AlbumCoverFolder of ghoApplication to sFolder

 Move (SizeOfArray (aFiles)) to iRow

 Direct_Input channel iChannel ("DIR:" - sFolder - "*.*")

 While (not (SeqEof))

 Readln channel iChannel sFileName

 If (not (SeqEof) and (Left (sFileName, 1) <> '[')) Begin

 Move (Trim (sFileName)) to sFileName

 Move (sFolder - '\' - sFileName) to aFiles[iRow].sRowID

 Move sFileName to aFiles[iRow].aCells[0].sValue

 Get DownloadURL of ghoWebResourceManager (sFolder - '\' - sFileName) ;

 to aFiles[iRow].aCells[1].aOptions[0]

 Increment iRow

 End

 Loop

 Close_Input channel iChannel

 Send Seq_Release_Channel iChannel

 End

End_Procedure

To complete the component change the content of the OnRowClick event to:

Procedure OnRowClick String sRowID

 Send NavigateClose Self

End_Procedure

Upon return, the invoking object fires the message OnGetNavigateDataBack and in this routine we simply pass the

current row identifier (remember that it contains the filename plus path) to the caller. Change the code of this event

to:

Procedure OnGetNavigateBackData tWebNavigateData ByRef NavigateData Handle hoBackToView

 Forward Send OnGetNavigateBackData (&NavigateData) hoBackToView

 WebGet psCurrentRowID to NavigateData.sRowID

End_Procedure

To get the Picture selector working; we will need to implement an event to fill the list. You can choose between

OnNavigateForward and OnShow. If you use this selection page only to select an existing image, the

OnNavigateForward will do. However, we also want to implement a way to upload new cover images to the system

and when we call that feature from the select view, we need to get the list refreshed on return of the upload feature.

In that case, OnShow is a better option. So add:

Procedure OnShow

 Send GridRefresh of oFilesList

End_Procedure

| 3
3
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

The event only fires if we set the pbServerOnShow property of this selection view to true.

The select view should not be started from the hamburger menu or a tile, and therefor remove the option from the

oViewMenu object in WebApp.src. Of course this means we need to add a way to navigate to the select view. For

this, add a button (cWebButton) object underneath the cWebImage control in the oZoomMedia view. Add the

following code:

Object oSelectImageButton is a cWebButton

 Set piColumnIndex to 11

 Set psCSSClass to "WebPromptMenuItem"

 Set psToolTip to "Select an Album Cover Image"

 Procedure OnClick

 Send SelectImage of oMedia_Picture

 End_Procedure

End_Object

As you can see, the code does not directly navigates to the select album cover image but sends a message to the

cWebImage object instead. This is done because the image selection consists of two parts; the navigation to the

image selector view and code that needs to be executed when returning from the view. Add the following code to

the oMedia_Picture object to select the image.

WebRegisterPath ntNavigateForward oSelectAlbumCover

Procedure SelectImage

 Boolean bEnabled

 WebGet pbEnabled to bEnabled

 If (bEnabled) Begin

 Send NavigatePath

 End

End_Procedure

Procedure OnNavigateBack Handle hoCallback tWebNavigateData NavigateData

 Send UpdateLocalImage NavigateData.sRowID

 Set Field_Changed_Value of oMedia_DD Field Media.Picture to ;

 (ExtractFileName (NavigateData.sRowID))

End_Procedure

If you want to make it possible to remove an image from an existing media, add the following button above the

oSelectImageButton object:

Object oClearImageWebButton is a cWebButton

 Set piColumnIndex to 10

 Set psCSSClass to "WebClearMenuItem"

 Set psToolTip to "Remove the current Album Cover Image"

 Procedure OnClick

 WebSet psURL of oMedia_Picture to "about:blank"

 Set Field_Changed_Value of oMedia_DD Field Media.Picture to ''

 End_Procedure

End_Object

To avoid the two buttons being clicked when the zoom view is opened in read-only modus (default) add the following

code to the SetActionButtons method of the view:

WebSet pbEnabled of oClearImageWebButton to (not (NavigateData.bReadOnly))

| 3
4
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

WebSet pbEnabled of oSelectImageButton to (not (NavigateData.bReadOnly))

Picture Upload View

This feature is easy to implement. You need to register the upload folder in your web application as a valid upload

folder. Add the following line to the RegisterAlbumCoversFolder method added in the chapter "Display the Album

Cover Image":

Send RegisterUploadFolder of ghoWebResourceManager sFolder

Now we need to create the component for uploading. Create a new Mobile Zoom view and name the view object

oUploadAlbumCover. Remove the controls and containers inside the oWebMainPanel object (they are created by the

template). Find the cWebFileUploadButton class in the class palette and drag it to the main panel object. Inside the

upload button, implement the OnFileUpload event to specify the location where the file needs to be uploaded to. Do

this with the following code:

Function OnFileUpload String sFileName Integer iBytes String sMime Returns String

 String sPath

 If (Left (Lowercase (sMime), Pos ('/', sMime) - 1) = "image") Begin

 Get AlbumCoverFolder of ghoApplication to sPath

 Move (sPath - '\' - sFileName) to sPath

 End

 Function_Return sPath

End_Function

After that, users may press the upload button when navigating to this view to select files from the local device and

upload them to the server . Add code to check the MIME type to avoid uploading a non-image file.

Lastly, we alter the 'New' button in the oSelectAlbumCover object's ActionGroup so that selecting this option takes

the user from the selection view to the upload view. Change the 'New' button to:

Object oNewButton is a cWebMenuItem

 Set psCaption to C_$New

 Set psCSSClass to "WebClearMenuItem"

 WebRegisterPath ntNavigateForward oUploadAlbumCover

 Procedure OnClick

 Send NavigatePath

 End_Procedure

End_Object

Borrowed or Owned?

Relationships between tables, such as the Media and People tables, by default require an existing parent row. In this

Quickstart it means that each Media row is connected to a row in the People table. If we see the Media as our

collection of books, CDs etc and see the connection to People really as "lent to", we can make the relationship

optional.

To do this, open the Media data dictionary and open the 'Structures' tab-page. The second list shows the required

parent tables. Tables listed there are validated on each save. By selecting the ‘Nulls’ checkbox, we make the

relationship to the People table optional.

| 3
5
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Do not select the 'Commit' checkbox as it would not allow us to change the

connection to a person anymore, and thus, defeats the idea of lending

collection items.

Remove and Borrowed

If you want to allow the application to delete a row from the People table, the relationship between the tables Media

and People require you to make a decision about what to do with the Media that links to the person to be removed

from the system. By default, the framework will delete all rows from the Media table connected to the person to be

removed. You could decide to write off the collection item, but why? It would be better not allow removing the

person when they have borrowed collection items. To do this, look up the option Cascade_Delete_State in the People

data dictionary class and select False (default is True).

Alternatively, you can let the system remove the link between the Media and People row when removing the person.

This means that you once owned the collection item but that it cannot be found anymore in your collection. If you

want to allow this, keep the Cascade_Delete_State as is but check the option 'Del Null' in the Media data dictionary.

Swipe Buttons

Mobile devices offer swiping and this makes it possible to enhance to the application when used on a mobile device

such as a smartphone.

A cWebList object usually contains two navigation options: one to drill-down to the next level (e.g. from customer to

orders) and another to view the details of the current row. The width available for a list on a mobile device is limited,

thus accommodating a pretty wide details button to go to details of a row is a challenge.

As an alternative, a swipe button, a class

that hides the button until you swipe the

list item horizontally, can replace the

details button.

You can even have both the details and

swipe buttons, hiding them based on the

current device.

To implement the swipe button change the class name of the oDetailsButton to cWebListSwipeButton and change a

couple of properties. Replace the current property settings with:

Set psCaption to "Details"

Set piWidth to 100

Set pbPositionLeft to True

Set psCSSClass to "WebIcon_Info Highlight"

If you want to have a details button and a swipe button, copy the button before replacing the properties and

implement the OnNavigateForward event in the view, adding the following code to the event:

Integer eMode

WebGet peMode of ghoWebApp to eMode

WebSet pbRender of oDetailsButton to (eMode = rmDesktop or eMode = rmMobileLandscape ;

 or eMode = rmTabletLandscape)

WebSet pbRender of oSwipeDetailsButton to (eMode = rmTabletPortrait or ;

 eMode = rmMobilePortrait)

| 3
6
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Peek Look at Borrowed Media

A couple of sections back (see Show All Media Borrowed) we showed how to drill-down from People into Media

where you see the Media borrowed by a person. Let us make the application a bit more advanced and show the first

four borrowed Media rows when clicking on a row in the People Select view instead of always navigate to select

Media.

Open the Class Palette and locate the cWebListExpandPanel under Web Containers and drag this to the cWebList

object in the SelectPeople.wo component. Name the object oMediaBorrowedExpandPanel and set peMode to

wleManual.

Move the oDetailButton object from the cWebList object into the cWebListExpandPanel object. Then, since

oDetailButton is not a child of the cWebList object any longer, change its class from cWebListColumnButton to

cWebButton. Change the psCSSClass of the button to "AsAnchor”" and set peAlign to alignLeft. Set the psCaption to

"Person details".

Add another cWebButton object to the cWebListExpandPanel container and name it oViewMoreButton. To show the

button on the right hand side of the container, set the peAlign property to alignRight. Set the psCaption to "View

More" and set the psCSSClass to the same as the oDetailButton, "AsAnchor".

Clicking on the oViewMoreButton button should navigate to the oSelectMedia. For that to happen, add the following

code to the button:

WebRegisterPath ntNavigateForward oSelectMedia

Procedure OnClick

 Send NavigatePath

End_Procedure

The next step is to add a DDO for the Media table to the select view. Since Media relates to People the Studio adds

the relational constraint filter line automatically. Make sure to keep that line. Set the Ordering property of the DDO to

5, which means that the requests for data always use the index made from PeopleId, Title and MediaId.

Now open SelectMedia.wo and copy the cWebList object code and paste it into the cWebListExpandPanel object.

Change the data binding of the cWebList object to oMedia_DD, adjusting the cWebList to read data from the correct

table.

The copied cWebList has its psCSSClass set to "MobileList", which is fine, but adding "SubList" to it make the sub-list

look better, so change the psCSSClass to:

Set psCSSClass to "MobileList SubList"

The images on the left and right shows how the user

interface without "SubList" (left) and with "SubList" (right)

look like. Notice the difference in the light blue background

color between the two.

To only show a couple of Media borrowed, set the

piLimitRows property to 4 and set pbScroll to False to limit

the height of the cWebList object for borrowed Media to the

number of rows in the list. Set the pbShowSelected property

to False to hide a current row marker in this sub-list.

When the person selected (name clicked on) has not

borrowed any media, the list should display "No Media

Borrowed". To make this happen, set the psPlaceHolder

property to this text.

| 3
7
 | D

a
ta

F
le

x
 W

e
b
 A

p
p
lica

tio
n
 F

ra
m

e
w

o
rk

 Q
u
ick

 In
tro

d
u
ctio

n
 G

u
id

e
 v

2
0
.0

Get Started!

This concludes this Quick Introduction Guide for DataFlex.

To learn more about DataFlex, visit the following sites to learn

more about the product and its creator:

 https://www.dataaccess.com/

 https://learning.dataaccess.com

Other related sites:

 https://support.dataaccess.com/forums

 https://www.dataaccess.com/dynamicai (Business Intelligence tool)

If the documentation, help-files or the forums don't provide you with answers, feel free to ask for assistance via e-

mail. Visit the Data Access website for the support options in your region.

Another very good resource is an extensive training guide called "Discovering

DataFlex" that contains more than 600 pages. This book has been made

available for each revision of DataFlex since the beginning of 2008. Please

contact your Data Access sales representative if you would like to purchase a

copy of this book. The book is available in PDF format.

We Look Forward to Helping

You to Get Started With

DataFlex!

https://www.dataaccess.com/
https://www.dataaccess.com/dynamicai

